Capsule Networks

Suthee Chaidaroon

Santa Clara University California, USA

April 11, 2018

Introduction

Digit Classification Task

Introduction

Digit Classification Task

Feature Learning

• Use Feed-forward neural networks.

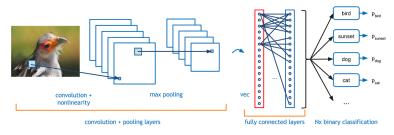
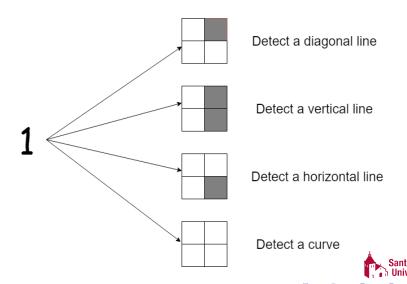
Feature Learning

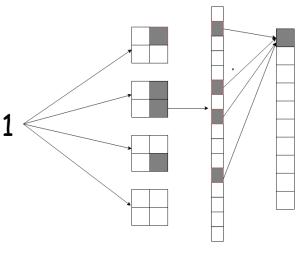
- Use Feed-forward neural networks.
- Use Convolutional neural networks.

Feature Learning

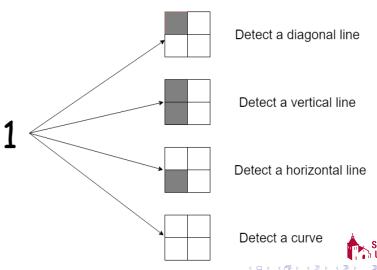
- Use Feed-forward neural networks.
- Use Convolutional neural networks.
- Use Capsule networks.

Convolutional Neural Network

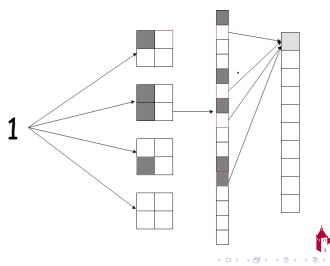




Figure: An example of a convolutional neural network¹

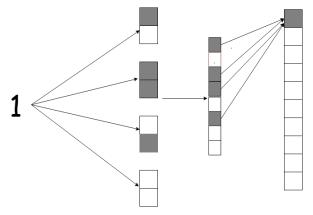
Convolutional Layer



Convolutional Layer


Max Pooling Layer

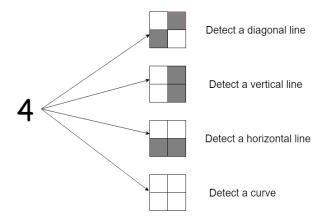
What if digit 1 is shifted to the left?


Max Pooling Layer

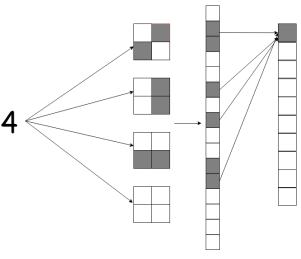
What if digit 1 is shifted to the left?

Max Pooling Layer

Sub-sample the feature map.



CapsNets


10 / 37

Try to recognize digit 4

Try to recognize digit 4

What is the limitation of CNNs?

Why does CNNs poorly distinguish digit 4 from digit 1?

Capsule Networks

- Model a part-whole relationship.
- Each capsule represents one unique feature.
- A group of low-level capsules represents "part" of the object.
- A high-level capsule represents an object.
- Model a hierarchical structure of visual features.

Try to recognize a face using CNNs

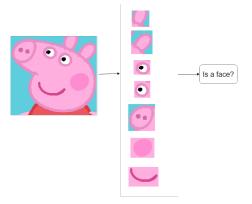
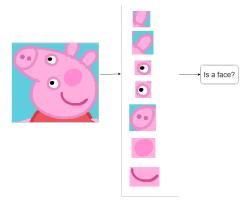
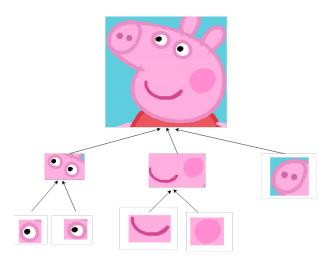
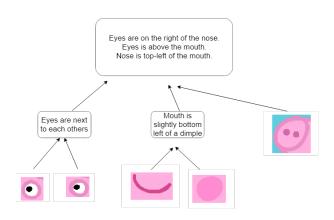
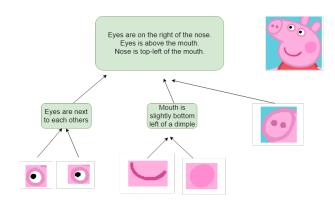


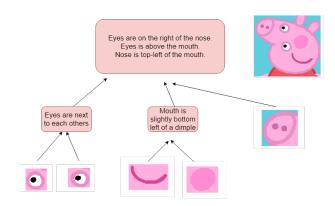
Figure: Detecting Peppa pig's face²

Try to recognize a face using CNNs


Figure: Detecting an incorrect Peppa pig's face

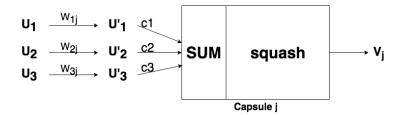

Suthee Chaidaroon CapsNets April 11, 2018 16 / 37

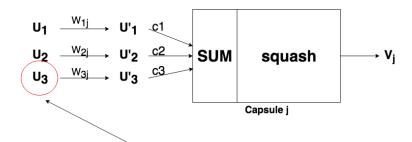


April 11, 2018

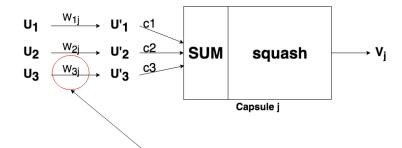
Capsule Approach

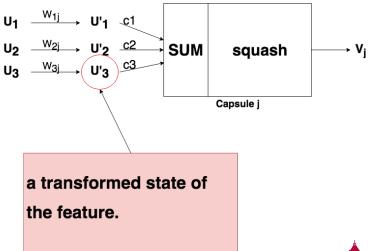
- Try to understand 3D space.
- Capsule encapsulates all important information about the state of the features they are detecting in a vector form.
- A vector length is a probability of detecting a feature.
- A vector direction is the state of the detected feature.

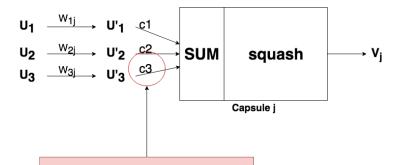



Capsule Approach

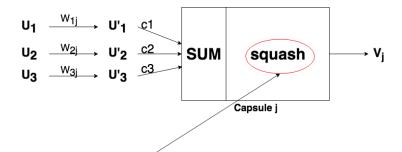
- Show a Capsule v.s. Traditional Neural.
- Draw a capsule layer.
- Draw a one-layer feedforward neural.




a vector that encodes the state of the feature.

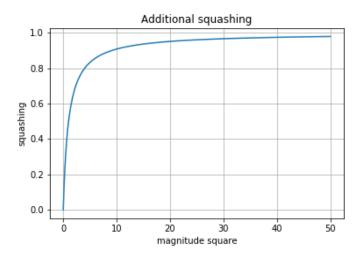


a learnable weight matrix that encodes spatial relationship



a non-negative scalar weight determined by routing algorithm.

a non-linear function that takes a vector as an input and outputs another vector.


Squash Function

$$extbf{v}_j = rac{\| extbf{s}_j\|^2}{1+\| extbf{s}_j\|^2} rac{ extbf{s}_j}{\| extbf{s}_j\|}$$

Squash Function

Santa Clara **■** This University

Dynamic Routing

- Each low-level capsule i, it has a weight $c_{i,j}$ as a probability of its output belong to each high level capsule j.
- $\sum_i c_{i,j} = 1$
- $\forall i,j$ $c_{i,j} >= 0$

Dynamic Routing

- for all capsule i in layer I and capsule j in layer I + 1: $b_{ii} = 0$
- a for r iterations do:
 - for all capsule i in layer $l: c_i = \operatorname{softmax}(b_i)$
 - ② for all capsule j in layer $l+1: s_i = \sum_i c_{ii} \hat{u}_{i|i}$
 - for all capsule j in layer $l+1: v_i = \text{squash}(s_i)$
 - of for all capsule i in layer l and capsule j in layer l+1: $b_{ii}=b_{ii}+\hat{u}_{i|i}\cdot v_i$
- return *v_i*

Architecture for MNIST

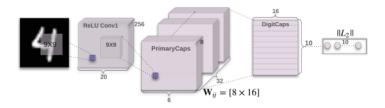


Figure: An encoder architecture³

33 / 37

Architecture for MNIST

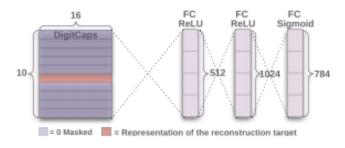


Figure: A decoder architecture⁴

Loss function

$$L_c = T_c \max(0, m^+ - \|V_c\|)^2 + \lambda(1 - T_c) \max(0, \|V_c\| - m^-)^2$$

Suthee Chaidaroon CapsNets April 11, 2018 35 / 37

References

- https://medium.com/ai%C2%B3-theory-practice-business/ understanding-hintons-capsule-networks-part-i-intuition-b
- Oynamic Routing Between Capsules https://arxiv.org/abs/1710.09829

Questions

Questions?

